题目内容
已知函数f(x)=sin| x |
| 3 |
| x |
| 3 |
| 3 |
| x |
| 3 |
(Ⅰ)将f(x)写成Asin(ωx+φ)的形式,并求其图象对称中心的横坐标;
(Ⅱ)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.
分析:(1)先将函数f(x)化简为:f(x)=
sin
+
(1+cos
)=
sin
+
cos
+
=sin(
+
)+
,
令sin(
+
)=0,可得答案.
(2)由b2=ac,有根据余弦定理可得cosx=
=
≥
=
,所以可得x∈(0,
],f(x)值域为(
,1+
].得到答案.
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
令sin(
| 2x |
| 3 |
| π |
| 3 |
(2)由b2=ac,有根据余弦定理可得cosx=
| a2+c2-b2 |
| 2ac |
| a2+c2-ac |
| 2ac |
| 2ac-ac |
| 2ac |
| 1 |
| 2 |
| π |
| 3 |
| 3 |
| ||
| 2 |
解答:解:f(x)=
sin
+
(1+cos
)=
sin
+
cos
+
=sin(
+
)+
,
(Ⅰ)由sin(
+
)=0
即
+
=kπ(k∈z)得x=
π,k∈z,
即对称中心的横坐标为
π,k∈z;
(Ⅱ)由已知b2=ac,cosx=
=
≥
=
,
∴
≤cosx<1, 0<x≤
,
<
+
≤
∵|
-
|>|
-
|,∴sin
<sin(
+
)≤1,∴
<sin(
+
)≤1+
,
即f(x)的值域为(
,1+
],
综上所述,x∈(0,
],f(x)值域为(
,1+
].
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
(Ⅰ)由sin(
| 2x |
| 3 |
| π |
| 3 |
即
| 2x |
| 3 |
| π |
| 3 |
| 3k-1 |
| 2 |
即对称中心的横坐标为
| 3k-1 |
| 2 |
(Ⅱ)由已知b2=ac,cosx=
| a2+c2-b2 |
| 2ac |
| a2+c2-ac |
| 2ac |
| 2ac-ac |
| 2ac |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2x |
| 3 |
| π |
| 3 |
| 5π |
| 9 |
∵|
| π |
| 3 |
| π |
| 2 |
| 5π |
| 9 |
| π |
| 2 |
| π |
| 3 |
| 2x |
| 3 |
| π |
| 3 |
| 3 |
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
即f(x)的值域为(
| 3 |
| ||
| 2 |
综上所述,x∈(0,
| π |
| 3 |
| 3 |
| ||
| 2 |
点评:本题主要考查三角函数的化简和余弦定理的应用.属中档题.求三角函数值域时一定多注意自变量x的取值范围.
练习册系列答案
相关题目