题目内容
(2007•天津一模)设f1(x)=-
(λ为常数,且0<λ<1),fn+1(x)=f1[fn(x)],an=
,(n∈N*).
(1)求a1的值;
(2)求证:数列{an}是等比数列;
(3)设数列{an}的前n项和为Sn•bn=
,Tn=
+b2+…+bn,试比较Tn与
a1的大小.
| 2λ |
| 2+λ+x |
| fn(0)+λ |
| fn(0)+2 |
(1)求a1的值;
(2)求证:数列{an}是等比数列;
(3)设数列{an}的前n项和为Sn•bn=
| anSn |
| n2 |
| b | 1 |
| 1 |
| 2 |
分析:(1)根据a1=
可知先求f1(0),只需令f1(x)=-
中的x=0即可求出所求;
(2)根据fn+1(0)=f1[f1(0)]与an+1=
可得an+1与an的关系,从而证得数列{an}是等比数列;
(3)根据(2)先求an与Sn的通项公式,利用不等式可证得anSn<
a1,然后根据当n≥2时,
<
-
,则bn<
a1(
-
),从而比较Tn与
a1的大小.
| f1(0)+λ |
| f1(0)+2 |
| 2λ |
| 2+λ+x |
(2)根据fn+1(0)=f1[f1(0)]与an+1=
| fn+1(0)+λ |
| fn+1(0)+2 |
(3)根据(2)先求an与Sn的通项公式,利用不等式可证得anSn<
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| n -1 |
| 1 |
| n |
| 1 |
| 2 |
解答:解:(1)f1(0)=-
…(1分)
a1=
=
…(4分)
(2)fn+1(0)=f1[f1(0)]=-
…(5分)
an+1=
=
=
-
=
an…(7分)
∴数列{an}是
为首项,
为公比的等比数列.…(8分)
(3)由(2)知an=
•(
)n-1=(
)n+1,Sn=
…(5分)
=a1•
[1-(
)n](
)n
∵0<λ<1
∴a1>0,0<
<
,0<
<1,[1-(
)n•(
)n]<
∴anSn<
a1…(11分)
又当n≥2时,
<
-
,∴bn<
a1(
-
) (13分)
∴Tn<
a1[1+(1-
)+(
-
)+…+(
-
)]=
a1(2-
)<
a1…(14分)
| 2λ |
| 2+λ |
a1=
| f1(0)+λ |
| f1(0)+2 |
| λ2 |
| 4 |
(2)fn+1(0)=f1[f1(0)]=-
| 2λ |
| 2+λ+f1(0) |
an+1=
| fn+1(0)+λ |
| fn+1(0)+2 |
| ||
|
| λ |
| 2 |
| fn(0)+λ |
| fn(0)+2 |
| λ |
| 2 |
∴数列{an}是
| λ2 |
| 4 |
| λ |
| 2 |
(3)由(2)知an=
| λ2 |
| 4 |
| λ |
| 2 |
| λ |
| 2 |
| ||||
1-
|
|
=a1•
| ||
1-
|
| λ |
| 2 |
| λ |
| 2 |
∵0<λ<1
∴a1>0,0<
| λ |
| 2 |
| 1 |
| 2 |
| ||
1-
|
| λ |
| 2 |
| λ |
| 2 |
| 1 |
| 4 |
∴anSn<
| 1 |
| 4 |
又当n≥2时,
| 1 |
| n2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| n -1 |
| 1 |
| n |
∴Tn<
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| 2 |
点评:本题主要考查了数列的递推关系,以及等比数列的证明和求和,同时考查了计算能力和运算求解的能力,属于难题.
练习册系列答案
相关题目