题目内容
在△ABC中,
+
=2
,|
|=1,点P在AM上且满足
=2
,则
•(
+
)等于( )
| AB |
| AC |
| AM |
| AM |
| AP |
| PM |
| PA |
| PB |
| PC |
分析:易得M是BC的中点,P是三角形ABC的重心,进而得
•(
+
)=
•2
,由数量积的定义可得答案.
| PA |
| PB |
| PC |
| PA |
| PM |
解答:解::由题意易知:M是BC的中点,P是三角形ABC的重心,
因为|
|=1,所以|
|=
,|
|=
,
所以
•(
+
)=
•2
=
×
×cosπ=-
.
故选D.
因为|
| AM |
| PA |
| 2 |
| 3 |
| PM |
| 1 |
| 3 |
所以
| PA |
| PB |
| PC |
| PA |
| PM |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
故选D.
点评:本题考查向量加减混合运算及几何意义,属基础题.
练习册系列答案
相关题目