题目内容
设函数f(x)=lnx-ax,(a∈R).
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当lnx<ax对于x∈(0,+∞)上恒成立时,求a的取值范围;
(Ⅲ)若k,n∈N*,且1≤k≤n,证明:
+
+…+
+…+
>
.
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当lnx<ax对于x∈(0,+∞)上恒成立时,求a的取值范围;
(Ⅲ)若k,n∈N*,且1≤k≤n,证明:
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 |
| e-1 |
(Ⅰ)求导函数,可得f′(x)=
-a(x>0)
当a≤0时,f′(x)>0,f(x)在(0,+∞)上是增函数;
当a>0时,由f′(x)>0可得0<x<
,由f′(x)>0可得x>
,
∴当a≤0时,函数f(x)的单调增区间是(0,+∞);当a>0时,函数f(x)的单调增区间是(0,
),单调减区间是(
,+∞);
(Ⅱ)lnx<ax对于x∈(0,+∞)上恒成立,等价于f(x)max<0
由上知,a≤0时,不成立;
a>0时,f(x)max=f(
)=ln
-1<0,∴a>
;
(Ⅲ)证明:∵函数f(x)=lnx-ax,由(Ⅱ)知,a=1时,f(x)max=f(
)=ln
-1=-1
∴lnx-x<-1
∴lnx<x-1
令x=1+
,则ln(1+
)<
,∴nln(1+
)<k,∴ln(1+
)n<k
∴(1+
)n<ek,∴
>
∴
+
+…+
+…+
>
+
+…+
+
=
+
当n→+∞时,
→
.
∴
+
+…+
+…+
>
.
| 1 |
| x |
当a≤0时,f′(x)>0,f(x)在(0,+∞)上是增函数;
当a>0时,由f′(x)>0可得0<x<
| 1 |
| a |
| 1 |
| a |
∴当a≤0时,函数f(x)的单调增区间是(0,+∞);当a>0时,函数f(x)的单调增区间是(0,
| 1 |
| a |
| 1 |
| a |
(Ⅱ)lnx<ax对于x∈(0,+∞)上恒成立,等价于f(x)max<0
由上知,a≤0时,不成立;
a>0时,f(x)max=f(
| 1 |
| a |
| 1 |
| a |
| 1 |
| e |
(Ⅲ)证明:∵函数f(x)=lnx-ax,由(Ⅱ)知,a=1时,f(x)max=f(
| 1 |
| a |
| 1 |
| a |
∴lnx-x<-1
∴lnx<x-1
令x=1+
| k |
| n |
| k |
| n |
| k |
| n |
| k |
| n |
| k |
| n |
∴(1+
| k |
| n |
| 1 | ||
(1+
|
| 1 |
| ek |
∴
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 |
| e |
| 1 |
| e2 |
| 1 |
| e2 |
| 1 |
| 2n |
| ||||
1-
|
| 1 |
| 2n |
当n→+∞时,
| ||||
1-
|
| 1 |
| e-1 |
∴
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 | ||
(1+
|
| 1 |
| e-1 |
练习册系列答案
相关题目