题目内容
若定义在R上的偶函数
满足
且
时,
则方程
的零点个数是( )
A.2个 B.3个 C.4个 D.多于4个
【答案】
C
【解析】
试题分析:由
知,函数
是周期为2的周期函数,且是偶函数,在同一坐标系中画出
和
的图像,有图可知零点个数为4个.
![]()
考点:1、周期函数;2、函数的图像;3、函数的零点.
练习册系列答案
相关题目
若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
| A、ex-e-x | ||
B、
| ||
C、
| ||
D、
|
若定义在R上的偶函数f(x)在(-∞,0]上是增函数,且f(-
)=2,那么不等式f(sin(2x-
))<2在[-
,
]上的解集为( )
| 1 |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
A、[-
| ||||||||||||
B、[-
| ||||||||||||
C、[-
| ||||||||||||
D、[-
|
若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则( )
A、f(2)<f(
| ||
B、f(1)<f(2)<f(
| ||
C、f(
| ||
D、f(1)<f(
|