题目内容
已知函数y=f(x),当x>1时,函数单调递减,又f(x)=f(2-x),试比较f(0),f(-2),f(π)的大小顺序 ________.
f(-2)<f(π)<f(0)
分析:利用函数的对称性把自变量-2,0,π对应的函数值转化到同一个单调区间内,在利用单调性即可.
解答:由f(x)=f(2-x)得对称轴为x=1,又当x>1时,函数单调递减,所以x<1时,函数单调递增,
f(π)=f(2-π),-2<2-π<0,所以 f(-2)<f(π)<f(0)
故答案为:f(-2)<f(π)<f(0)
点评:本题考查了函数的单调性和对称性,在利用单调性解题时遵循原则是:增函数自变量越大函数值越大,减函数自变量越小函数值越小.
分析:利用函数的对称性把自变量-2,0,π对应的函数值转化到同一个单调区间内,在利用单调性即可.
解答:由f(x)=f(2-x)得对称轴为x=1,又当x>1时,函数单调递减,所以x<1时,函数单调递增,
f(π)=f(2-π),-2<2-π<0,所以 f(-2)<f(π)<f(0)
故答案为:f(-2)<f(π)<f(0)
点评:本题考查了函数的单调性和对称性,在利用单调性解题时遵循原则是:增函数自变量越大函数值越大,减函数自变量越小函数值越小.
练习册系列答案
相关题目