题目内容

如图,在45°的二面角α-l-β的棱上有两点A、B,点C、D分别在α,β内,且AC⊥AB,∠ABD=45°,AC=AB=BD=1,则CD的长度为(  )
分析:过D作DE垂直AB于E,由已知中二面角α-l-β为45°,且AC⊥AB,∠ABD=45°,AC=AB=BD=1,计算出DE,AE长后,代入异面直线上两点距离公式,可得答案.
解答:解:过D作DE垂直AB于E
∠ABD=45°,BD=1,
∴DE=
2
2

又∵AB=1
∴AE=1-
2
2

又∵二面角α-l-β为45°
故CD=
AC2+AE2+DE2-2AC•DE•COS45°
=
2-
2

故选B
点评:本题考查的知识点是异面直线上两点之间的距离公式,其中计算出DE,AE长是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网