题目内容
已知数列{an}满足an+2+an=2an+1(n∈N+),且a3+a5=14,a4+a6=18
(1)求数列{an}的通项公式an;
(2)令bn=an(
)n,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式an;
(2)令bn=an(
| 1 | 2 |
分析:(1)由数列{an}满足an+2+an=2an+1(n∈N+),知数列{an}是等差数列,再由a3+a5=14,a4+a6=18,利用等差数列的通项公式求出首项和公差,由此能求出an.
(2)由an=2n-1,知bn=an(
)n=(2n-1)•(
)n,由此利用错位相减法能求出数列{bn}的前n项和Sn.
(2)由an=2n-1,知bn=an(
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵数列{an}满足an+2+an=2an+1(n∈N+),
∴数列{an}是等差数列,
∵a3+a5=14,a4+a6=18,
∴
,
解得a1=1,d=2,
∴an=2n-1.
(2)∵an=2n-1,
∴bn=an(
)n=(2n-1)•(
)n,
∴数列{bn}的前n项和
Sn=1×
+3×(
)2+5×(
)3+…+(2n-1)×(
)n,①
∴
Sn=1×(
)2+3×(
)3+5×(
)4+…+(2n-1)×(
)n+1,②
①-②,得
Sn=
+2×(
)2+2×(
)3+2×(
)4+…+2×(
)n-(2n-1)×(
)n+1
=
+2×[(
)2+(
)3+(
)4+…+(
)n]-(2n-1)×(
)n+1
=
+2×
-(2n-1)×(
)n+1
=
+1-(
)n-1-(2n-1)×(
)n+1,
∴Sn=3-(
)n-2-(2n-1)(
)n.
∴数列{an}是等差数列,
∵a3+a5=14,a4+a6=18,
∴
|
解得a1=1,d=2,
∴an=2n-1.
(2)∵an=2n-1,
∴bn=an(
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{bn}的前n项和
Sn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=3-(
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目