题目内容

已知函数f(x)=
|ln|x||,x≠0
0,x=0
,则方程f2(x)-f(x)=0的不相等的实根个数为
 
分析:方程f2(x)-f(x)=0可解出f(x)=0或f(x)=1,方程f2(x)-f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,根据函数f(x)的形式,求方程的根的个数的问题可以转化为求两个函数y=0,y=1的图象与函数f(x)的图象的交点个数的问题.
解答:精英家教网解:方程f2(x)-f(x)=0可解出f(x)=0或f(x)=1,
方程f2(x)-f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,方程的根的个数与两个函数y=0,y=1的图象与函数
f(x)的图象的交点个数相同,
 如图,由图象,y=1的图象与函数f(x)的图象的交点个数有四个,y=0的图象与函数f(x)的图象的交点个数有三个,
故方程f2(x)-f(x)=0有七个解,
应选C.
点评:本题考点是分段函数,考查解分段函数类型的方程,求其根的个数,此类题常转化为求函数交点的个数,用图象法来求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网