题目内容
若x>y>0,则
x3+
的最小值为
| 2 |
| 3 |
| xy-y2 |
10
10
.分析:原式可变形为:
x3+
=
x3+
≥
x3+
=
x3+
,然后拆项使积为常数,再利用基本不等式可得最小值.
| 2 |
| 3 |
| xy-y2 |
| 2 |
| 3 |
| y(x-y) |
| 2 |
| 3 | ||
(
|
| 2 |
| 12 |
| x2 |
解答:解:因为x>y>0,
所以
x3+
=
x3+
≥
x3+
=
x3+
,
当且仅当y=x-y,即x=2y①时取等号,
又
x3+
=
x3+
x3+
+
+
≥5
=5×2=10,
当且仅当
x3=
②时取等号,
由①②得x=
,y=
.
所以
x3+
的最小值为10.
故答案为:10.
所以
| 2 |
| 3 |
| xy-y2 |
| 2 |
| 3 |
| y(x-y) |
| 2 |
| 3 | ||
(
|
| 2 |
| 12 |
| x2 |
当且仅当y=x-y,即x=2y①时取等号,
又
| 2 |
| 12 |
| x2 |
| ||
| 2 |
| ||
| 2 |
| 4 |
| x2 |
| 4 |
| x2 |
| 4 |
| x2 |
| 5 |
| ||||||||||||||
当且仅当
| ||
| 2 |
| 4 |
| x2 |
由①②得x=
| 2 |
| ||
| 2 |
所以
| 2 |
| 3 |
| xy-y2 |
故答案为:10.
点评:本题考查运用基本不等式求最值问题,使用条件为:“一正、二定、三相等”,注意多次使用不等式时须保证等号能同时取到.
练习册系列答案
相关题目