题目内容
已知cos(
π-α)=
,α∈(2π,
π),则coaα=( )
| 19 |
| 3 |
| 2 |
| 3 |
| 5 |
| 2 |
A.
| B.
| C.
| D.
|
∵α∈(2π,
π),∴
-α∈(-
,-
),
∵cos(
π-α)=cos(6π+
-α)=cos(
-α)=
,
∴sin(
-α)=
=
,
∴cosα=cos[
-(
-α)]=
cos(
-α)+
sin(
-α)=
×
+
×
=
.
故选B
| 5 |
| 2 |
| π |
| 3 |
| 13π |
| 6 |
| 5π |
| 3 |
∵cos(
| 19 |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 2 |
| 3 |
∴sin(
| π |
| 3 |
1-cos2(
|
| ||
| 3 |
∴cosα=cos[
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| ||
| 2 |
| ||
| 3 |
2+
| ||
| 6 |
故选B
练习册系列答案
相关题目