题目内容
若函数f(x)是以4为周期的偶函数,且f(-1)=a(a≠0),则f(5)的值等于( )A.5a
B.-a
C.a
D.1-a
【答案】分析:根据函数的周期性,可把f(5)转化成f(1),再根据奇偶性得到f(1)与f(-1)的关系,即可解题
解答:解:∵f(x)的周期为4
∴f(5)=f(1)
又∵f(x)是偶函数
∴f(1)=f(-1)=a
∴f(5)=a
故选C
点评:本题考察函数的周期性和奇偶性,灵活运用函数的性质,把函数值进行转化,即可解题.属简单题
解答:解:∵f(x)的周期为4
∴f(5)=f(1)
又∵f(x)是偶函数
∴f(1)=f(-1)=a
∴f(5)=a
故选C
点评:本题考察函数的周期性和奇偶性,灵活运用函数的性质,把函数值进行转化,即可解题.属简单题
练习册系列答案
相关题目