题目内容
设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=2x2.
(Ⅰ) 求x<0时,f(x)的表达式;
(Ⅱ) 令g(x)=lnx,问是否存在x0,使得f(x),g(x)在x=x0处的切线互相平行?若存在,请求出x0值;若不存在,请说明理由.
(Ⅰ) 求x<0时,f(x)的表达式;
(Ⅱ) 令g(x)=lnx,问是否存在x0,使得f(x),g(x)在x=x0处的切线互相平行?若存在,请求出x0值;若不存在,请说明理由.
(Ⅰ)当x<0时,-x>0,f(x)=-f(-x)=-2(-x)2=-2x2;(6分)
(Ⅱ)若f(x),g(x)在x0处的切线互相平行,则f'(x0)=g'(x0),(4分)
f′(x0)=4x0=g′(x0)=
,解得,x0=±
∵x≥0,得x0=
(4分)
(Ⅱ)若f(x),g(x)在x0处的切线互相平行,则f'(x0)=g'(x0),(4分)
f′(x0)=4x0=g′(x0)=
| 1 |
| x0 |
| 1 |
| 2 |
∵x≥0,得x0=
| 1 |
| 2 |
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |