题目内容
已知数列{an}满足a1=4,a2=2,a3=1,又{an+1-an}成等差数列(n∈N*)则an等于 .
分析:设bn=an+1-an,则b1=-2,b2=-1,根据{an+1-an}成等差数列,可得{bn}是以-2为首项,1为公差的等差数列,利用叠加法,可求数列的通项.
解答:解:设bn=an+1-an,则b1=-2,b2=-1,
∵{an+1-an}成等差数列,
∴{bn}成等差数列,
∴{bn}是以-2为首项,1为公差的等差数列,
∴bn=n-3,
∴an=a1+(a2-a1)+…+(an-an-1)=a1+b1+…+bn-1=4+
=
(n2-7n+14).
故答案为:
(n2-7n+14).
∵{an+1-an}成等差数列,
∴{bn}成等差数列,
∴{bn}是以-2为首项,1为公差的等差数列,
∴bn=n-3,
∴an=a1+(a2-a1)+…+(an-an-1)=a1+b1+…+bn-1=4+
| (n-1)(-2+n-4) |
| 2 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查等差数列的通项,考查等差数列的求和,考查学生分析转化问题的能力,求出数列的通项是关键.
练习册系列答案
相关题目