题目内容
【题目】在直角坐标系内,已知A(3,2)是圆C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若圆C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0),(m,0),则实数m的取值集合为 .
【答案】[3,7]
【解析】解:由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,
∴圆上不相同的两点为B(1,4),D(5,4),
∵A(3,2),BA⊥DA
∴BD的中点为圆心C(3,4),半径为1,
∴⊙C的方程为(x﹣3)2+(y﹣4)2=4.
过P,M,N的圆的方程为x2+y2=m2,
∴两圆外切时,m的最大值为
+2=7,两圆内切时,m的最小值为
﹣2=3,
所以答案是[3,7].
练习册系列答案
相关题目