题目内容
已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足2
=an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Bn.
| Sn |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| an•an+1 |
(Ⅰ)由2
=an+1,n=1代入得a1=1,
两边平方得4Sn=(an+1)2(1),
(1)式中n用n-1代入得4Sn-1=(an-1+1)2
(2),
(1)-(2),得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,(3分)
[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
由正数数列{an},得an-an-1=2,
所以数列{an}是以1为首项,2为公差的等差数列,有an=2n-1.(7分)
(Ⅱ)bn=
=
=
(
-
),
裂项相消得Bn=
.(14分)
| Sn |
两边平方得4Sn=(an+1)2(1),
(1)式中n用n-1代入得4Sn-1=(an-1+1)2
|
(1)-(2),得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,(3分)
[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
由正数数列{an},得an-an-1=2,
所以数列{an}是以1为首项,2为公差的等差数列,有an=2n-1.(7分)
(Ⅱ)bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
裂项相消得Bn=
| n |
| 2n+1 |
练习册系列答案
相关题目