题目内容
函数f(x)=sinxsin(x-
)的最小正周期为______.
| π |
| 3 |
f(x)=sinxsin(x-
)
=sinx(sinxcos
-cosxsin
)
=
sin2x-
sinxcosx
=
-
sin2x
=-
(
sin2x+
cos2x)+
=-
sin(2x+
)+
T=
=π
故答案为:π
| π |
| 3 |
=sinx(sinxcos
| π |
| 3 |
| π |
| 3 |
=
| 1 |
| 2 |
| ||
| 2 |
=
| 1-cos2x |
| 4 |
| ||
| 4 |
=-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
=-
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
T=
| 2π |
| 2 |
故答案为:π
练习册系列答案
相关题目
已知函数f(x)=sin(ωx+
)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象( )
| π |
| 4 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|