题目内容
(本小题满分14分)
已知函数![]()
.
(Ⅰ)当
时,求函数
的图象在
处的切线方程;
(Ⅱ)判断函数
的单调性;
(Ⅲ)若函数
在
上为增函数,求
的取值范围.
(Ⅰ)
.
(Ⅱ)当
时,函数
在
单调递增;
当
时,函数
在
单调递减,在
上单调递增.
(Ⅲ)
.
【解析】(I)当a=2时,先求出
的值,即切线的斜率,然后写出点斜式方程,再化成一般式即可.
(II)先求导,可得
,然后再对
和a<0两种情况进行讨论研究其单调性.
(III)本小题转化为
在
上恒成立,也可考虑求出f(x)的增区间D,然后根据
求解也可.
(Ⅰ)当
时,
(
),········································· 1分
∴
,···································································· 2分
∴
,所以所求的切线的斜率为3.······················································· 3分
又∵
,所以切点为
.
故所求的切线方程为:
.······································································· 4分
(Ⅱ)∵
,![]()
∴
······························································· 5分
①当
时,∵
,∴
;····························································· 6分
②当
时,
由
,得
;由
,得
;·························· 8分
综上,当
时,函数
在
单调递增;
当
时,函数
在
单调递减,在
上单调递增.········ 9分
(Ⅲ)①当
时,由(Ⅱ)可知,函数
在
单调递增.此时,
,故
在
上为增函数.······································································································· 11分
②当
时,由(Ⅱ)可知,函数
在
上单调递增.
∵
在
上为增函数,
∴
,故
,解得
,
∴
.······························································································ 13分
综上所述,
的取值范围为
. 14分