题目内容

如图,已知斜三棱柱ABC—A1B1C1中,∠BCA=90°,AC=BC=a,点A1在底面ABC上的射影恰为AC的中点D,BA1⊥AC1.

(1)求证:BC⊥平面A1ACC1;

(2)求二面角B-AA1-C的正切值.

答案:(1)证明:∵A1D⊥平面ABC,∴A1D⊥BC.

又AC⊥BC,∴BC⊥平面A1-AC-C1.

(2)解:作CM⊥AA1于M,∵BC⊥平面A1ACC1,

由三垂线定理得知AA1⊥BM,

∴∠BMC是二面角BAA1C的平面角.

∵BA1⊥AC1,BC⊥平面A1ACC1,由三垂线定理的逆定理知A1C⊥AC1,

∴四边形A1ACC1是菱形.∴A1A=AC=a.

又∵A1D⊥AC于D,D是AC中点,∴AA1=CA1=AC=a.

∴△A1AC是正三角形,∴CM=a.

BC=a,∴tan∠BMC=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网