题目内容
设数列{an}的前n项和为Sn,且Sn=(1+λ)-λan,其中λ≠-1,0;
(I)证明:数列{an}是等比数列.
(II)设数列{an}的公比q=f(λ),数列{bn}满足b1=
,bn=f(bn-1)(n∈N*,n≥2)求数列{bn}的通项公式;
(III)记λ=1,记Cn=an(
-1),求数列{Cn}的前n项和为Tn.
(I)证明:数列{an}是等比数列.
(II)设数列{an}的公比q=f(λ),数列{bn}满足b1=
| 1 |
| 2 |
(III)记λ=1,记Cn=an(
| 1 |
| bn |
(I)由Sn=(1+λ)-λan得,Sn-1=(1+λ)-λan-1(n≥2),
两式相减得:an=-λan+λan-1,∴
=
(n≥2),
∵λ≠-1,0,∴数列{an}是等比数列.
(II)由(I)知,f(λ)=
,
∵bn=f(bn-1)(n∈N*),∴bn=
,即
=
+1,
∴{
}是首项为
=2,公差为1的等差数列;
∴
=2+(n-1)=n+1,
则bn=
,
(III)λ=1时,q=
=
,且a1=1,∴an=(
)n-1,
∴Cn=an(
-1)=(
)n-1n,
∴Tn=1+2(
)+3(
)2+…+n(
)n-1,①
Tn=(
)+2(
)2+3(
)3+…+n(
)n②
②-①得:
Tn=1+(
)+(
)2+(
)3+…+(
)n-1-n(
)n,
∴
Tn=1+(
)+(
)2+(
)3+…+(
)n-1-n(
)n=2(1-(
)n)-n(
)n,
∴Tn=4(1-(
)n)-2n(
)n.
两式相减得:an=-λan+λan-1,∴
| an |
| an-1 |
| λ |
| 1+λ |
∵λ≠-1,0,∴数列{an}是等比数列.
(II)由(I)知,f(λ)=
| λ |
| 1+λ |
∵bn=f(bn-1)(n∈N*),∴bn=
| bn |
| 1+bn-1 |
| 1 |
| bn |
| 1 |
| bn-1 |
∴{
| 1 |
| bn |
| 1 |
| b1 |
∴
| 1 |
| bn |
则bn=
| 1 |
| n+1 |
(III)λ=1时,q=
| λ |
| 1+λ |
| 1 |
| 2 |
| 1 |
| 2 |
∴Cn=an(
| 1 |
| bn |
| 1 |
| 2 |
∴Tn=1+2(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
②-①得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=4(1-(
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目