题目内容
函数f(x)是定义在R上的奇函数,当x∈(0,+∞)时,f(x)=lg(x+1),那么当x∈(-∞,0)时,f(x)的解析式是( )
| A.y=-lg(1-x) | B.y=lg(1-x) | C.y=-lg|x+1| | D.y=-lg(x+1) |
设x<0,则-x>0,
因为当x∈(0,+∞)时,f(x)=lg(x+1),
所以f(-x)=lg(-x+1).
因为函数f(x)是定义在R上的奇函数,
所以f(-x)=-f(x),所以f(x)=-lg(-x+1).
故选A.
因为当x∈(0,+∞)时,f(x)=lg(x+1),
所以f(-x)=lg(-x+1).
因为函数f(x)是定义在R上的奇函数,
所以f(-x)=-f(x),所以f(x)=-lg(-x+1).
故选A.
练习册系列答案
相关题目
已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
,0)时,f(x)=log2(-3x+1),则f(2011)=( )
| 3 |
| 2 |
| A、-2 |
| B、2 |
| C、4 |
| D、log27 |