题目内容
设数列{an}的前n项和为Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t为正常数,n=2,3,4…).
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
)(n≥2),试求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
(1)求证:{an}为等比数列;
(2)设{an}公比为f(t),作数列bn使b1=1,bn=f(
| 1 |
| bn-1 |
(1)证明:∵a1=1,3tSn-(2t+3)Sn-1=3t(n≥2,n∈N*)①
∴3tSn-1-(2t+3)Sn-2=3t(n≥3,n∈N*)②
①②两式相减得
又n=2时,
∴an是以1为首项,
为公比的等比数列.
(2)∵f(t)=
=
,∴bn=
,∴bn-bn-1=
(n≥2)
∴bn是以1为首项,
为公差的等差数列,∴bn=
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
=b2(b1-b3)+b4(b3-b4)+…+b2n(b2n-1-b2n+1)
=-
(b2+b4+b2n)=-
=
.
∴3tSn-1-(2t+3)Sn-2=3t(n≥3,n∈N*)②
①②两式相减得
|
又n=2时,
|
∴an是以1为首项,
| 2t+3 |
| 3t |
(2)∵f(t)=
| 2t+3 |
| 3t |
2+
| ||
| 3 |
| 2+3bn-1 |
| 3 |
| 2 |
| 3 |
∴bn是以1为首项,
| 2 |
| 3 |
| 2n+1 |
| 3 |
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)
=b2(b1-b3)+b4(b3-b4)+…+b2n(b2n-1-b2n+1)
=-
| 4 |
| 3 |
| 4 |
| 3 |
n(
| ||||
| 2 |
| -8n2-12n |
| 9 |
练习册系列答案
相关题目