题目内容
设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,其中m为常数,且m<-1,
(1)求证:{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=
a1,bn=f(bn-1)(n≥2,n∈N),求数列{bn•bn+1}的前n项和Tn.
(1)求证:{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=
| 1 | 3 |
分析:(1)由Sn=(m+1)-man可得Sn+1=(m+1)-man+1,两式相减即可证得{an}是等比数列;
(2)由(1)可求得a1,从而可得b1,由q=f(m)=
,bn=f(bn-1)=
,可求
,从而求得bn=
(n≥1),继而有bn•bn+1=
-
,Tn可求.
(2)由(1)可求得a1,从而可得b1,由q=f(m)=
| m |
| m+1 |
| bn-1 |
| bn-1+1 |
| 1 |
| bn |
| 1 |
| n+2 |
| 1 |
| n+2 |
| 1 |
| n+3 |
解答:解:(1)由已知Sn=(m+1)-man,Sn+1=(m+1)-man+1,相减,
得:an+1=man-man+1,
即
=
,
所以{an}是等比数列
(2)当n=1时,a1=m+1-ma1,
则a1=1,
从而b1=
,
由(1)知q=f(m)=
,
所以bn=f(bn-1)=
(n≥2)
∴
=1+
,
∴
=3+(n-1)=n+2,
bn=
(n≥1),
∴bn•bn+1=
=
-
Tn=b1b2+b2b3+…+bnbn+1=(
-
)+(
-
)+…+(
-
)=
-
=
.
得:an+1=man-man+1,
即
| an+1 |
| an |
| m |
| m+1 |
所以{an}是等比数列
(2)当n=1时,a1=m+1-ma1,
则a1=1,
从而b1=
| 1 |
| 3 |
由(1)知q=f(m)=
| m |
| m+1 |
所以bn=f(bn-1)=
| bn-1 |
| bn-1+1 |
∴
| 1 |
| bn |
| 1 |
| bn-1 |
∴
| 1 |
| bn |
bn=
| 1 |
| n+2 |
∴bn•bn+1=
| 1 |
| (n+2)(n+3) |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3 |
| 1 |
| n+3 |
| n |
| 3n+9 |
点评:本题考查数列的求和,难点在于求bn,着重考查学生裂项法求和,属于中档题.
练习册系列答案
相关题目