题目内容

设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,其中m为常数,且m<-1,
(1)求证:{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=
13
a1bn=f(bn-1)(n≥2,n∈N)
,求数列{bn•bn+1}的前n项和Tn
分析:(1)由Sn=(m+1)-man可得Sn+1=(m+1)-man+1,两式相减即可证得{an}是等比数列;
(2)由(1)可求得a1,从而可得b1,由q=f(m)=
m
m+1
bn=f(bn-1)=
bn-1
bn-1+1
,可求
1
bn
,从而求得bn=
1
n+2
(n≥1)
,继而有bnbn+1=
1
n+2
-
1
n+3
,Tn可求.
解答:解:(1)由已知Sn=(m+1)-man,Sn+1=(m+1)-man+1,相减,
得:an+1=man-man+1
an+1
an
=
m
m+1

所以{an}是等比数列
(2)当n=1时,a1=m+1-ma1
则a1=1,
从而b1=
1
3

由(1)知q=f(m)=
m
m+1

所以bn=f(bn-1)=
bn-1
bn-1+1
(n≥2)
1
bn
=1+
1
bn-1

1
bn
=3+(n-1)=n+2

bn=
1
n+2
(n≥1)

bnbn+1=
1
(n+2)(n+3)
=
1
n+2
-
1
n+3
Tn=b1b2+b2b3+…+bnbn+1=(
1
3
-
1
4
)+(
1
4
-
1
5
)+…+(
1
n+2
-
1
n+3
)
=
1
3
-
1
n+3
=
n
3n+9
点评:本题考查数列的求和,难点在于求bn,着重考查学生裂项法求和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网