题目内容
已知椭圆
=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为
(a-c),则椭圆的离心率e的取值范围是________.
因为PT=
(b>c),而PF2的最小值为a-c,所以PT的最小值为
.依题意有,
≥
(a-c),
所以(a-c)2≥4(b-c)2,所以a-c≥2(b-c),所以a+c≥2b,所以(a+c)2≥4(a2-c2),
所以5c2+2ac-3a2≥0,所以5e2+2e-3≥0 ①.
又b>0,所以b2>c2,所以a2-c2>c2,
所以2e2<1②,联立①②,得
≤e<
.
所以(a-c)2≥4(b-c)2,所以a-c≥2(b-c),所以a+c≥2b,所以(a+c)2≥4(a2-c2),
所以5c2+2ac-3a2≥0,所以5e2+2e-3≥0 ①.
又b>0,所以b2>c2,所以a2-c2>c2,
所以2e2<1②,联立①②,得
练习册系列答案
相关题目