题目内容
已知数列{an}的通项公式an=
,则前n项和Sn=
.
| 1 |
| n(n+1) |
| n |
| n+1 |
| n |
| n+1 |
分析:由数列{an}的通项公式an=
,知前n项和Sn=
+
+…+
=(1-
)+(
-
)+…+(
-
).由此能求出其结果.
| 1 |
| n(n+1) |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵数列{an}的通项公式an=
,
∴前n项和Sn=a1+a2+…+an
=
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
| 1 |
| n(n+1) |
∴前n项和Sn=a1+a2+…+an
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
故答案为:
| n |
| n+1 |
点评:本题考查数列的求和,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|