题目内容
| AC |
| SB |
| 3 |
| 4 |
(1)求二面角A-SB-C的大小.
(2)求异面直线AS,BC所成角.
分析:(1)取M为SB的中点,连接AM,则AM⊥SB,又BC⊥SB,故利用向量
,
的夹角,利用余弦定理可求二面角A-SB-C的平面角;
(2)异面直线AS,BC所成角转化为向量
,
的夹角问题,从而得解.
| AM |
| BC |
(2)异面直线AS,BC所成角转化为向量
| AS |
| BC |
解答:解:(1)取M为SB的中点,连接AM,
则AM⊥SB,
=
+
+
∴
•
=
•
+
2+
•
=
2=
∴|
|=
.
设二面角A-SB-C为α,∵AC=SB=
,AM=
,BM=
,BC=1
∴AC2=AM2+BC2+BM2-2AM•BC•cosα,
∴cosα=
,α=arccos
.
(2)
=
-
=
-
∴
•
=
•
=-
∴异面直线AS,BC所成角为arccos
则AM⊥SB,
| AC |
| AM |
| MB |
| BC |
∴
| AC |
| SB |
| AM |
| SB |
| 1 |
| 2 |
| SB |
| BC |
| SB |
| 1 |
| 2 |
| SB |
| 3 |
| 4 |
∴|
| SB |
| ||
| 2 |
设二面角A-SB-C为α,∵AC=SB=
| ||
| 2 |
| ||
| 4 |
| ||
| 4 |
∴AC2=AM2+BC2+BM2-2AM•BC•cosα,
∴cosα=
| ||
| 10 |
| ||
| 10 |
(2)
| AS |
| AM |
| SM |
| AM |
| 1 |
| 2 |
| SB |
∴
| AS |
| BC |
| AM |
| BC |
| 1 |
| 4 |
∴异面直线AS,BC所成角为arccos
| 1 |
| 4 |
点评:本题以向量为载体,考查面面角,线线角,关键是利用好向量条件.
练习册系列答案
相关题目