题目内容

已知函数f(x)=
ex
x-a
,其中常数(a<0).
(I)若a=-1,求函数f(x)的定义域及极值;
(Ⅱ)若存在实数x∈(a,0],使得不等式f(x)≤
1
2
成立,求a的取值范围.
分析:(1)函数的分母不为0,可求函数的定义域;求导函数,令其大于0(小于0),结合函数的定义域,可求函数的单调区间,从而函数极值点与极值可求.
(2)由已知,f(x)=
ex
x-a
1
2
只需在(a,0]上的最小值大于等于
1
2
即可.
解答:解::(1)函数f(x)的定义域为{x|x≠a},若a=-1,则f(x)=
ex
x-a
=
ex
x+1

f′(x)=
ex(x+1)-ex
(x+1)2
=
xex
(x+1)2

由f'(x)=0,解得x=0
由f'(x)>0,解得x>0.由f'(x)<0,解得x<0且x≠-1.
∴f(x)的单调递增区间为(0,+∞),单调递减区间为(-∞,-1),(-1,0).所以f(x)在x=0时取得极小值f(0)=1
(2)由题意可知,a<0,且f(x)=
ex
x-a
只需在(a,0]上的最小值大于等于
1
2
即可,
①若a+1<0即a<-1时,
x (a,a+1) a+1 (a+1,0)
f'(x) - 0 +
f(x) 极小值
∴f(x)在(a,0]上的最小值为f(a+1)=ea+1.则ea+1
1
2
,得a≥ln
1
2
  -1

②若a+1≥0即a≥-1时,f(x)在(a,0]上单调递减,则f(x)在(a,0]上的最小值为f(0)=-
1
a

-
1
a
  ≥
1
2
得a≥-2. …10分
综上所述,0>a≥ln
1
2
  -1
点评:本题主要考查利用导数求函数的单调区间,求函数的极值值,考查等价转化能力,属于中档题.易错点在于最小值大于等于
1
2
而不是最大值大于等于
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网