题目内容
已知函数y=ax(a>0,a≠1)的反函数是y=f-1(x),若f-1(m)+f-1(n)=0,则m+n的最小值是______.
函数y=ax(a>0,a≠1)的反函数是y=f-1(x)=logax,(a>0,a≠1)
所以;f-1(m)+f-1(n)=0,就是logam+logan=0,可得 mn=1(m,n>0)
(m+n)2≥4mn=4,所以m+n≥2(当且仅当m=n时取等号)
故答案为:2
所以;f-1(m)+f-1(n)=0,就是logam+logan=0,可得 mn=1(m,n>0)
(m+n)2≥4mn=4,所以m+n≥2(当且仅当m=n时取等号)
故答案为:2
练习册系列答案
相关题目
已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( )
A、
| ||
| B、2 | ||
| C、3 | ||
| D、4 |