题目内容
已知等差数列an是递增数列,且满足a5=3,S6=12.
(1)求数列an的通项公式;
(2)令bn=
,数列bn的前n项和Sn,若存在整数t,使Sn≤t对任意自然数n∈N*恒成立,求t的最小值.
(1)求数列an的通项公式;
(2)令bn=
| 1 |
| anan+1 |
(1)根据题意:
,解得
,(3分)
故等差数列{an}的通项公式为an=a1+(n-1)•d=
(6分)
(2)bn=
=
=
=
(
-
),
Sn=
[(1-
)+(
-
)+(
-
)+…+(
-
)]=
[(1-
)]=
(1-
)<
(12分)
∵t是整数,∴t的最小值是5.(15分)
|
|
故等差数列{an}的通项公式为an=a1+(n-1)•d=
| 2n-1 |
| 3 |
(2)bn=
| 1 |
| anan+1 |
| 1 | ||||
|
| 9 |
| (2n-1)(2n+1) |
| 9 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
Sn=
| 9 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 9 |
| 2 |
∵t是整数,∴t的最小值是5.(15分)
练习册系列答案
相关题目