题目内容
已知二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如表.
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
| y | -24 | -10 | 0 | 6 | 8 | 6 | 0 | -10 | -24 | … |
则使ax2+bx+c>0成立的x的取值范围是( )
A.(-10,-1)∪(1+∞)
B.(-∞,-1)∪(3+∞)
C.(-1,3)
D.(0,+∞)
[答案] C
[解析] 由表可知f(x)的两个零点为-1和3,当-1<x<3时f(x)取正值∴使ax2+bx+c>0成立的x的取值范围是(-1,3).
练习册系列答案
相关题目