题目内容
| A、120° | B、60° | C、75° | D、90° |
分析:本题适合建立空间坐标系得用向量法解决这个立体几何问题,建立空间坐标系,给出有关点的坐标,求出直线的GF、C1E与AB的方向向量,利用夹角公式求线线角的余弦值即可.
解答:
解:建立坐标系如图,
B(2,0,0),A(2,2,0),G(0,0,1),F(1,1,0),C1(0,0,2),E(1,2,1).
则
=(0,2,0),
=(1,1,-1),
=(1,2,-1),
∴cos<
,
>=
,
cos<
,
>=
,∴cosα=
,
cosβ=
,sinβ=
,∴α+β=90°,
故选D
B(2,0,0),A(2,2,0),G(0,0,1),F(1,1,0),C1(0,0,2),E(1,2,1).
则
| BA |
| GF |
| C1E |
∴cos<
| BA |
| GF |
| 1 | ||
|
cos<
| BA |
| C1E |
| ||
|
| 1 | ||
|
cosβ=
| ||
|
| 1 | ||
|
故选D
点评:考查用空间向量为工具解决立体几何问题,此类题关键是找清楚线的方向向量,最后利用夹角公式计算.
练习册系列答案
相关题目
| A、4011 | B、4009 | C、2011015 | D、2009010 |