题目内容

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求
1
a1
+
2
a2
+…+
n
an
的值;
(2)求证:a1+
a2
2
+…+
an
n
≤n+
5
6
-
1
3n
(n∈N*);
(3)设bn=
an
n
(n∈N*),求证:b1b2…bn<2.
分析:(1)把所给的式子变形可得  3(
n
an
-1
)=
n-1
an-1
-1,故可得 {
n
an
-1
}是以-
1
3
位首项,以
1
3
为公比的等比数列,求出
n
an
=1-(
1
3
)
n
,从而可求
1
a1
+
2
a2
+…+
n
an
的值.
(2)由条件可得
an
n
=
3n
3n-1
≤1+
2
3n
,从而得到  a1+
a2
2
+…+
an
n
≤n+
1
2
+
2
9
[1-(
1
3
n-1
]
1-
1
3
=n+
1
2
+
1
3
-(
1
3
)
n
,运算求出结果.
(3)由bn=
an
n
=
3n
3n-1
,用数学归纳法证明 b1b2…bn<2
3n - 1
3n
<2,(n≥2),再由b1<2,从而得出结论成立.
解答:解:(1)∵a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*),∴
1
an
=
2an-1+n-1
3nan-1
n
an
=
2
3
+
1
3
×
n-1
an-1

3n
an
=2+
n-1
an-1
,∴3(
n
an
-1
)=
n-1
an-1
-1.
故可得 {
n
an
-1
}是以-
1
3
位首项,以
1
3
为公比的等比数列,∴
n
an
-1=-
1
3
 (
1
3
)
n-1
,∴
n
an
=1-(
1
3
)
n

1
a1
+
2
a2
+…+
n
an
=n-
1
3
[1-(
1
3
)
n
]
1-
1
3
=n-
1
2
+
1
2
 (
1
3
)
n


(2)∵
n
an
=1-(
1
3
)
n
,∴
an
n
=
3n
3n-1
=1+
1
3n-1
≤1+
2
3n


∴a1+
a2
2
+…+
an
n
≤n+
1
2
+
2
9
[1-(
1
3
n-1
]
1-
1
3
=n+
1
2
+
1
3
-(
1
3
)
n
=n+
5
6
-
1
3n
(n∈N*).

(3)∵bn=
an
n
=
3n
3n-1
,现用数学归纳法证明 b1b2…bn<2
3n - 1
3n
,(n≥2).
当n=2时,b1b2 =
3
3-1
 
9
9-1
=
27
16
 
16
9
=2
9-1
9

假设当n=k (k≥2)时,b1b2…bk <2
3k - 1
3k

当 n=k+1时,b1b2…bk bk+1<2
3k - 1
3k
31+k
3k+1-1
. 
要证明 2
3k - 1
3k
31+k
3k+1-1
<2
3k1 - 1
3k+1

只需证明 3k+1•3k+1 ( 3k-1)<3k•(3k+1-1)2
只要证 3×3k+1  ( 3k-1)<(3k+1-1)2,32k+2-3k+2<32k+2-23k+1+1,
3k+2>23k+1-1,3k+1>-1.
而3k+1>-1 显然成立,∴n=k+1 时,b1b2…bk bk+1<2
3k1 - 1
3k+1

综上得 b1b2…bk bk+1<2
3k1 - 1
3k+1
<2.
又当n=1时,b1<2,所以 b1b2…bk bk+1<2.
点评:本题主要考查用放缩法证明不等式,用数学归纳法证明不等式,掌握好放缩的程度,是解题的难点.还考查等比数列的前n项和公式,等比关系的确定,数列与不等式的综合,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网