题目内容
已知数列{an}满足:a1=
,且an=
(n≥2,n∈N*).
(1)求
+
+…+
的值;
(2)求证:a1+
+…+
≤n+
-
(n∈N*);
(3)设bn=
(n∈N*),求证:b1b2…bn<2.
| 3 |
| 2 |
| 3nan-1 |
| 2an-1+n-1 |
(1)求
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
(2)求证:a1+
| a2 |
| 2 |
| an |
| n |
| 5 |
| 6 |
| 1 |
| 3n |
(3)设bn=
| an |
| n |
分析:(1)把所给的式子变形可得 3(
-1)=
-1,故可得 {
-1}是以-
位首项,以
为公比的等比数列,求出
=1-(
)n,从而可求
+
+…+
的值.
(2)由条件可得
=
≤1+
,从而得到 a1+
+…+
≤n+
+
=n+
+
-(
)n,运算求出结果.
(3)由bn=
=
,用数学归纳法证明 b1b2…bn<2
<2,(n≥2),再由b1<2,从而得出结论成立.
| n |
| an |
| n-1 |
| an-1 |
| n |
| an |
| 1 |
| 3 |
| 1 |
| 3 |
| n |
| an |
| 1 |
| 3 |
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
(2)由条件可得
| an |
| n |
| 3n |
| 3n-1 |
| 2 |
| 3n |
| a2 |
| 2 |
| an |
| n |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
(3)由bn=
| an |
| n |
| 3n |
| 3n-1 |
| 3n - 1 |
| 3n |
解答:解:(1)∵a1=
,且an=
(n≥2,n∈N*),∴
=
,
=
+
×
.
∴
=2+
,∴3(
-1)=
-1.
故可得 {
-1}是以-
位首项,以
为公比的等比数列,∴
-1=-
(
)n-1,∴
=1-(
)n.
∴
+
+…+
=n-
=n-
+
(
)n.
(2)∵
=1-(
)n,∴
=
=1+
≤1+
,
∴a1+
+…+
≤n+
+
=n+
+
-(
)n=n+
-
(n∈N*).
(3)∵bn=
=
,现用数学归纳法证明 b1b2…bn<2
,(n≥2).
当n=2时,b1b2 =
=
<
=2
.
假设当n=k (k≥2)时,b1b2…bk <2
,
当 n=k+1时,b1b2…bk bk+1<2
•
.
要证明 2
•
<2
,
只需证明 3k+1•3k+1 ( 3k-1)<3k•(3k+1-1)2,
只要证 3×3k+1 ( 3k-1)<(3k+1-1)2,32k+2-3k+2<32k+2-23k+1+1,
3k+2>23k+1-1,3k+1>-1.
而3k+1>-1 显然成立,∴n=k+1 时,b1b2…bk bk+1<2
,
综上得 b1b2…bk bk+1<2
<2.
又当n=1时,b1<2,所以 b1b2…bk bk+1<2.
| 3 |
| 2 |
| 3nan-1 |
| 2an-1+n-1 |
| 1 |
| an |
| 2an-1+n-1 |
| 3nan-1 |
| n |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
| n-1 |
| an-1 |
∴
| 3n |
| an |
| n-1 |
| an-1 |
| n |
| an |
| n-1 |
| an-1 |
故可得 {
| n |
| an |
| 1 |
| 3 |
| 1 |
| 3 |
| n |
| an |
| 1 |
| 3 |
| 1 |
| 3 |
| n |
| an |
| 1 |
| 3 |
∴
| 1 |
| a1 |
| 2 |
| a2 |
| n |
| an |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
(2)∵
| n |
| an |
| 1 |
| 3 |
| an |
| n |
| 3n |
| 3n-1 |
| 1 |
| 3n-1 |
| 2 |
| 3n |
∴a1+
| a2 |
| 2 |
| an |
| n |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 5 |
| 6 |
| 1 |
| 3n |
(3)∵bn=
| an |
| n |
| 3n |
| 3n-1 |
| 3n - 1 |
| 3n |
当n=2时,b1b2 =
| 3 |
| 3-1 |
| 9 |
| 9-1 |
| 27 |
| 16 |
| 16 |
| 9 |
| 9-1 |
| 9 |
假设当n=k (k≥2)时,b1b2…bk <2
| 3k - 1 |
| 3k |
当 n=k+1时,b1b2…bk bk+1<2
| 3k - 1 |
| 3k |
| 31+k |
| 3k+1-1 |
要证明 2
| 3k - 1 |
| 3k |
| 31+k |
| 3k+1-1 |
| 3k1 - 1 |
| 3k+1 |
只需证明 3k+1•3k+1 ( 3k-1)<3k•(3k+1-1)2,
只要证 3×3k+1 ( 3k-1)<(3k+1-1)2,32k+2-3k+2<32k+2-23k+1+1,
3k+2>23k+1-1,3k+1>-1.
而3k+1>-1 显然成立,∴n=k+1 时,b1b2…bk bk+1<2
| 3k1 - 1 |
| 3k+1 |
综上得 b1b2…bk bk+1<2
| 3k1 - 1 |
| 3k+1 |
又当n=1时,b1<2,所以 b1b2…bk bk+1<2.
点评:本题主要考查用放缩法证明不等式,用数学归纳法证明不等式,掌握好放缩的程度,是解题的难点.还考查等比数列的前n项和公式,等比关系的确定,数列与不等式的综合,属于难题.
练习册系列答案
相关题目