题目内容
设数列{an}的前n项积为Tn,且Tn=2-2an(n∈N*).
(1)求
,
,
,并证明
-
=
(n≥2);
(2)设bn=(1-an)(1-an+1),求数列{bn}的前n项和Sn.
(1)求
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| Tn |
| 1 |
| Tn-1 |
| 1 |
| 2 |
(2)设bn=(1-an)(1-an+1),求数列{bn}的前n项和Sn.
(1)令n=1,可得T1=a1=2-2a1,可得a1=
,即T1=
;
令n=2可得T2=2-2a2,即
a2=2-2a2,解得a2=
,同理可求a3=
=
,
=2,
=
;
由题意可得:Tn=2-2
?Tn•Tn-1=2Tn-1-2Tn(n≥2),
所以
-
=
(n≥2);
(2)数列{
}为等差数列,
=
,
当n≥2时,an=
=
,,当n=1时,a1=
也符合,所以an=
.
bn=
=
-
,
∴sn=
+
+…+
=
-
+
-
+…+
-
=
-
=
.
| 2 |
| 3 |
| 2 |
| 3 |
令n=2可得T2=2-2a2,即
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
| 1 |
| T1 |
| 3 |
| 2 |
| 1 |
| T2 |
| 1 |
| T3 |
| 5 |
| 2 |
由题意可得:Tn=2-2
| Tn |
| Tn-1 |
所以
| 1 |
| Tn |
| 1 |
| Tn-1 |
| 1 |
| 2 |
(2)数列{
| 1 |
| Tn |
| 1 |
| Tn |
| n+2 |
| 2 |
当n≥2时,an=
| Tn |
| Tn-1 |
| n+1 |
| n+2 |
| 2 |
| 3 |
| n+1 |
| n+2 |
bn=
| 1 |
| (n+2)(n+3) |
| 1 |
| n+2 |
| 1 |
| n+3 |
∴sn=
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| (n+2)•(n+3) |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3 |
| 1 |
| n+3 |
| n |
| 3n+9 |
练习册系列答案
相关题目