题目内容
如果m>0,x,y∈[m,+∞),且
,那么
- A.x=y
- B.x>y
- C.x<y
- D.x≤y
A
分析:考查方程的特性,推出x,y具有对称性,容易得到选项.
解答:由题意
可知x,y在方程中具有对称性,所以B、C、D都不正确.
故选A.
点评:本题考查比较大小,考查学生分析问题解决问题的能力,是中档题.
分析:考查方程的特性,推出x,y具有对称性,容易得到选项.
解答:由题意
可知x,y在方程中具有对称性,所以B、C、D都不正确.
故选A.
点评:本题考查比较大小,考查学生分析问题解决问题的能力,是中档题.
练习册系列答案
相关题目
已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上不同的两点,P是圆x2+y2+kx=0上的动点,如果M,N关于x-y-1=0对称,则△PAB面积的最大值是
3+
| 2 |
3+
.| 2 |
若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且满足两个条件:
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=
.
(Ⅰ)当n=4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3;
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=
|
| a11 | a12 | … | a1m |
| a21 | a22 | … | a2m |
| … | … | … | … |
| an1 | an2 | … | anm |
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3;
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)