题目内容
已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列
【答案】分析:根据q3=
求得q,进而根据等比数列的通项公式求得an,则bn可得,最后利用裂项法求得数列
的前n项的和.
解答:解:q3=
=27,求得q=3
∴an=3×3n-1=3n,
∴bn=log3an=n,
=
=
-
∴Sn=1-
+
-
+…+
-
=1-
=
故答案为:
点评:本题主要考查了等比数列的性质.考查了学生对基础知识的综合运用.
解答:解:q3=
∴an=3×3n-1=3n,
∴bn=log3an=n,
∴Sn=1-
故答案为:
点评:本题主要考查了等比数列的性质.考查了学生对基础知识的综合运用.
练习册系列答案
相关题目