题目内容

(2011•福建模拟)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交与点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.
(1)用β表示α; 
(2)如果sinβ=
45
,求点B(xB,yB)的坐标;
(3)求xB-yB的最小值.
分析:(1)作出图形,结合图形由∠AOB=α-
π
2
=π-2β
,能求出α=
2
-2β

(2)由sinα=
yB
r
,r=1,得yB=sinα=sin(
2
-2β)
=-cos2β=2sin2β-1=2•(
4
5
)2-1=
7
25
.由此能求出点B(xB,yB)的坐标;
(3)【法一】xB-yB=cosα-sinα=
2
cos(α+
π
4
)
,由此能求出xB-yB的最小值.
【法二】由α为钝角,知xB<0,yB>0,xB2+yB2=1,xB-yB=-(-xB+yB),(-xB+yB2≤2(xB2+yB2)=2,由此能求出xB-yB的最小值.
解答:解:(1)如图,∵∠AOB=α-
π
2
=π-2β

α=
2
-2β
.4分
(2)由sinα=
yB
r
,又r=1,
yB=sinα=sin(
2
-2β)

=-cos2β=2sin2β-1=2•(
4
5
)2-1=
7
25
.7分
由钝角α,
xB=cosα=-
1-sin2α
=-
24
25

B(-
24
25
7
25
)
.9分
(3)【法一】xB-yB=cosα-sinα=
2
cos(α+
π
4
)

α∈(
π
2
,π),α+
π
4
∈(
4
4
)

cos(α+
π
4
)∈[-1,-
2
2
)

∴xB-yB的最小值为-
2
13分
【法二】α为钝角,
∴xB<0,yB>0,
xB2+yB2=1,
xB-yB=-(-xB+yB),
(-xB+yB2≤2(xB2+yB2)=2,
xB-yB≥-
2

∴xB-yB的最小值为-
2
.13分
点评:本题考查三角函数的性质和应用,综合性强,是高考的常见题型.解题时要认真审题,仔细解答,注意三角函数恒等变换的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网