题目内容
数列{an}中,若a1=1,an+an+1=
(n∈N*),则
(a1+a2+…+a2n)= .
| 1 |
| 2n |
| lim |
| n→∞ |
分析:由an+an+1=
,求出a1+a2+a3+a4+…+a2n-1+a2n,然后求得极限.
| 1 |
| 2n |
解答:解:由an+an+1=
,得(a1+a2)+(a3+a4)+…+(a2n-1+a2n)=
+
+…+
=
=
(1-
),
∴
(a1+a2+…+a2n)=
[
(1-
)]=
,
故答案为:
.
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 23 |
| 1 |
| 22n-1 |
=
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 4n |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 2 |
| 3 |
| 1 |
| 4n |
| 2 |
| 3 |
故答案为:
| 2 |
| 3 |
点评:本题考查数列求和、数列极限,属基础题,准确求出数列的和是解题关键.
练习册系列答案
相关题目