题目内容
已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,f(0)=1,且对称轴是x=-1,g(x)=
求g(2)+g(-2)的值;
(2)在(1)条件下,求f(x)在区间[t,t+2](t∈R)上的最小值f(x)min.
(1)若函数f(x)的最小值是f(-1)=0,f(0)=1,且对称轴是x=-1,g(x)=
|
(2)在(1)条件下,求f(x)在区间[t,t+2](t∈R)上的最小值f(x)min.
(1)∵
,即
,
解得:
,
∴f(x)=(x+1)2,(3分)
∴g(x)=
,
∴g(2)+g(-2)=8;(6分)
(2)当t+2≤-1时,即t≤-3时f(x)=(x+1)2在区间[t,t+2]上单调递减.
f(x)min=f(t+2)=(t+3)2(8分)
当t<-1<t+2时,即-3<t<-1时f(x)=(x+1)2在区间[t,-1]上单调递减,
f(x)=(x+1)2在区间[-1,t+2]上单调递增,
f(x)min=f(-1)=0(10分)
当t≥-1时,f(x)=(x+1)2在区间[t,t+2]上单调递增,
f(x)min=f(t)=(t+1)2(12分)
综上所述:f(x)min=
,
.(14分)
|
|
解得:
|
∴f(x)=(x+1)2,(3分)
∴g(x)=
|
∴g(2)+g(-2)=8;(6分)
(2)当t+2≤-1时,即t≤-3时f(x)=(x+1)2在区间[t,t+2]上单调递减.
f(x)min=f(t+2)=(t+3)2(8分)
当t<-1<t+2时,即-3<t<-1时f(x)=(x+1)2在区间[t,-1]上单调递减,
f(x)=(x+1)2在区间[-1,t+2]上单调递增,
f(x)min=f(-1)=0(10分)
当t≥-1时,f(x)=(x+1)2在区间[t,t+2]上单调递增,
f(x)min=f(t)=(t+1)2(12分)
综上所述:f(x)min=
|
|
练习册系列答案
相关题目