题目内容
△ABC的内角A,B,C的对边分别为a,b,c,已知cos(B-A)=2sin2
.
(Ⅰ)求sinAsinB;
(Ⅱ)若a2+b2=
c2,求tanC.
| C |
| 2 |
(Ⅰ)求sinAsinB;
(Ⅱ)若a2+b2=
| 11 |
| 8 |
分析:(1)根据二倍角的余弦公式化简题中的等式,得到cos(B-A)=1-cosC,再由三角函数的诱导公式与两角和与差的余弦公式,化简整理即可求出sinAsinB的值.
(2)根据a2+b2=
c2利用余弦定理算出cosC=
,从而根据sinAsinB=
,利用正弦定理化简得cosC=
(1-cos2C),由此解出cosC=
,进而可得tanC的值.
(2)根据a2+b2=
| 11 |
| 8 |
| 3c2 |
| 16ab |
| 1 |
| 2 |
| 3 |
| 8 |
| 1 |
| 3 |
解答:解:(1)∵sin2
=
(1-cosC),
∴cos(B-A)=2sin2
=1-cosC,
又∵在△ABC中,cosC=-cos(A+B)=sinAsinB-cosAcosB,
cos(B-A)=cosAcosB+sinAsinB,
∴cosAcosB+sinAsinB=1-(sinAsinB-cosAcosB),
化简得2sinAcosA=1,解得sinAsinB=
;
(2)∵a2+b2=
c2,
∴根据余弦定理,得cosC=
=
=
,
又∵由(1)sinAsinB=
,化简得
=
=
sin2C.
∴cosC=
sin2C=
(1-cos2C),化简得3cos2C+8cosC-3=0,解之得cosC=
(舍去-3),
由此可得sinC=
=
,tanC=
=2
.
| C |
| 2 |
| 1 |
| 2 |
∴cos(B-A)=2sin2
| C |
| 2 |
又∵在△ABC中,cosC=-cos(A+B)=sinAsinB-cosAcosB,
cos(B-A)=cosAcosB+sinAsinB,
∴cosAcosB+sinAsinB=1-(sinAsinB-cosAcosB),
化简得2sinAcosA=1,解得sinAsinB=
| 1 |
| 2 |
(2)∵a2+b2=
| 11 |
| 8 |
∴根据余弦定理,得cosC=
| a2+b2-c2 |
| 2ab |
| ||
| 2ab |
| 3c2 |
| 16ab |
又∵由(1)sinAsinB=
| 1 |
| 2 |
| 3c2 |
| 16ab |
| 3sin2C |
| 16sinAsinB |
| 3 |
| 8 |
∴cosC=
| 3 |
| 8 |
| 3 |
| 8 |
| 1 |
| 3 |
由此可得sinC=
| 1-cos2C |
2
| ||
| 3 |
| sinC |
| cosC |
| 2 |
点评:本题给出三角形的内角满足的三角函数等式,求三角函数的值.着重考查了三角恒等变换公式、正余弦定理、诱导公式与同角三角函数的基本关系等知识,属于中档题.
练习册系列答案
相关题目