题目内容
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=| 1 | an•an+1 |
(1)求数列{an}的通项公式an;
(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.
分析:(1)由题意,得
,由此可解得an=1+(n-1)•2=2n-1.
(2)由bn=
=
=
(
-
),知Sn=
[(1-
)+(
-
)++(
-
)]=
(1-
)=
.由此可求出m的值.
|
(2)由bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
解答:解:(1)由题意,得
解得
<d<
.
又d∈Z,∴d=2.∴an=1+(n-1)•2=2n-1.
(2)∵bn=
=
=
(
-
),
∴Sn=
[(1-
)+(
-
)++(
-
)]=
(1-
)=
.
∵S1=
,S2=
,Sm=
,S2为S1,Sm(m∈N*)的等比中项,
∴S22=SmS1,即(
)2=
•
,
解得m=12.
|
解得
| 3 |
| 2 |
| 5 |
| 2 |
又d∈Z,∴d=2.∴an=1+(n-1)•2=2n-1.
(2)∵bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∵S1=
| 1 |
| 3 |
| 2 |
| 5 |
| m |
| 2m+1 |
∴S22=SmS1,即(
| 2 |
| 5 |
| 1 |
| 3 |
| m |
| 2m+1 |
解得m=12.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目