题目内容
已知二次函数f(x)=px2+qx(p≠0),其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=
(an+2),2b1+22b2+23b3+…+2nbn=cn,求数列{bn}的通项公式;
(Ⅲ)已知不等式ln(x+1)<x(x>0)成立,求证:
<
(n∈N*,n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=
| 1 |
| 3 |
(Ⅲ)已知不等式ln(x+1)<x(x>0)成立,求证:
| n |
| k=2 |
| lnk |
| k2 |
| 2n2-n-1 |
| 4(n+1) |
分析:(Ⅰ)根据给出的二次函数的导函数求出p、q的值,把点代入二次函数解析式,求出Sn,分类求出an;
(Ⅱ)由(Ⅰ)中求出的an得cn,代入递推式后运用错位相减法可求得bn;
(Ⅲ)根据不等式ln(x+1)<x(x>0)成立,则
<
=1-
,结合结论中分母有k2,所以把其中的x换为n2,放缩后进行列项求和即可得证.
(Ⅱ)由(Ⅰ)中求出的an得cn,代入递推式后运用错位相减法可求得bn;
(Ⅲ)根据不等式ln(x+1)<x(x>0)成立,则
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
解答:解:(Ⅰ)已知二次函数f(x)=px2+qx(p≠0),则f'(x)=2px+q=6x-2
故p=3,q=-2
所以f(x)=3x2-2x,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
则Sn=3n2-2n,当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=6n-5
故数列{an}的通项公式:an=6n-5
(Ⅱ)由(Ⅰ)得,cn=
(an+2)=2n-1,2b1+22b2+23b3+…+2nbn=2n-1,
当n=1时,b1=
,
当n≥2时,2b1+22b2+23b3+…+2n-1bn-1+2nbn=2n-1
2b1+22b2+23b3+…+2n-1bn-1=2(n-1)-1
两式相减得:bn=
=21-n,
故数列{bn}的通项公式:bn=
(Ⅲ)已知不等式ln(x+1)<x(x>0)成立,故lnx<x-1,则
<
=1-
所以
<1-
⇒
<
(1-
),
故
+
+…+
<
(1-
)+
(1-
)+…+
(1-
)
=
(n-1)-
(
+
+…+
))<
(n-1)-
(
+
+…+
)
=
(n-1)-
(
-
+
-
+…+
-
)
=
.
故不等式
<
(n∈N*,n≥2)成立.
故p=3,q=-2
所以f(x)=3x2-2x,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
则Sn=3n2-2n,当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=6n-5
故数列{an}的通项公式:an=6n-5
(Ⅱ)由(Ⅰ)得,cn=
| 1 |
| 3 |
当n=1时,b1=
| 1 |
| 2 |
当n≥2时,2b1+22b2+23b3+…+2n-1bn-1+2nbn=2n-1
2b1+22b2+23b3+…+2n-1bn-1=2(n-1)-1
两式相减得:bn=
| 1 |
| 2n-1 |
故数列{bn}的通项公式:bn=
|
(Ⅲ)已知不等式ln(x+1)<x(x>0)成立,故lnx<x-1,则
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
所以
| lnn2 |
| n2 |
| 1 |
| n2 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
故
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 2 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2n2-n-1 |
| 4(n+1) |
故不等式
| n |
| k=2 |
| lnk |
| k2 |
| 2n2-n-1 |
| 4(n+1) |
点评:本题考查了数列与不等式的综合,考查了给出数列前n项和求通项的方法,训练了不等式证明的放缩法,同时考查了数列的列项求和,是一个综合性较强的问题,属难度较大的题型.
练习册系列答案
相关题目