题目内容
已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意的n∈N*,有2Sn=2an2+an-1.
(1)求数列{an}的通项公式;
(2)记bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)记bn=
| an | 2n |
分析:(1)在数列的递推式中取n=n+1得另一递推式,两式相减整理得到数列{an}为等差数列,且求出等差数列的公差,然后代入等差数列的通项公式得答案;
(2)把数列{an}的通项公式代入bn=
,利用错位相减法求数列{bn}的前n项和Tn.
(2)把数列{an}的通项公式代入bn=
| an |
| 2n |
解答:解:(1)由2Sn=2an2+an-1,得2Sn+1=2an+12+an+1-1.
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an)⇒
(an+1+an)(2an+1-2an-1)=0
∵an>0,∴2an+1-2an-1=0,∴an+1=an+
.
∴数列{an}是以1为首项,
为公差的等差数列
∴an=
;
( 2 )由bn=
=
则Tn=
+
+
+…+
,①
Tn=
+
+
+…+
.②
①-②得:
Tn=
+
+
+
+…+
-
=
+
-
=
-
-
,
所以Tn=
-
-
=
-
.
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an)⇒
(an+1+an)(2an+1-2an-1)=0
∵an>0,∴2an+1-2an-1=0,∴an+1=an+
| 1 |
| 2 |
∴数列{an}是以1为首项,
| 1 |
| 2 |
∴an=
| n+1 |
| 2 |
( 2 )由bn=
| an |
| 2n |
| n+1 |
| 2n+1 |
则Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| 4 |
| 25 |
| n+1 |
| 2n+2 |
①-②得:
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 25 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
| 3 |
| 4 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
所以Tn=
| 3 |
| 2 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
点评:本题考查了等差关系的确定,考查了等差数列的通项公式,训练了利用错位相减法求数列的前n项和,是中档题.
练习册系列答案
相关题目