题目内容
在等差数列{an}中,a1=3,a4=2,则a4+a7+…a3n+1等于______.
设等差数列{an}的公差为d,
∵a1=3,a4=2,∴3+(4-1)d=2,解得d=-
.
∴an=3+(n-1)×(-
)=-
n+
.
∴a3n+1=-
×(3n+1)+
=3-n.
∴a4+a7+…a3n+1=(3-1)+(3-2)+…(3-n)=3n-
=
.
故答案为
.
∵a1=3,a4=2,∴3+(4-1)d=2,解得d=-
| 1 |
| 3 |
∴an=3+(n-1)×(-
| 1 |
| 3 |
| 1 |
| 3 |
| 10 |
| 3 |
∴a3n+1=-
| 1 |
| 3 |
| 10 |
| 3 |
∴a4+a7+…a3n+1=(3-1)+(3-2)+…(3-n)=3n-
| n(n+1) |
| 2 |
| n(5-n) |
| 2 |
故答案为
| n(5-n) |
| 2 |
练习册系列答案
相关题目