题目内容
(2012•昌平区一模)已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=a1,
=
+
+…+
(n≥2,n∈N*),求bn+1an-(bn+1)an+1的值;
(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<
b1b2…bn(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=a1,
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<
| 10 |
| 3 |
分析:(1)利用点(an,an+1)在直线y=2x+1上,可得an+1+1=2(an+1),从而可得{an+1}是以2为首项,2为公比的等比数列,由此可求数列的通项公式;
(2)确定
=
+
,即可求bn+1an-(bn+1)an+1的值;
(3)由(2)可知,
=
(n≥2),b2=a2,证明(1+
)(1+
)…(1+
)<
即可.
(2)确定
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
(3)由(2)可知,
| bn+1 |
| bn+1 |
| an |
| an+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 10 |
| 3 |
解答:(1)解:∵点(an,an+1)在直线y=2x+1上,
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
=
+
+…+
(n≥2,n∈N*)
∴
=
+
∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
=
(n≥2),b2=a2
∴(1+
)(1+
)…(1+
)=
•
•
•…
•bn+1
=
•
•
•
•…
•bn+1=2
=2(
+
+…+
)
∵k≥2时,
=2(
-
)
∴
+
+…+
=1+
+…+
<1+2[(
-
)+…+(
-
)]=1+2(
-
)<
∴(1+
)(1+
)…(1+
)<
∴(1+b1)(1+b2)…(1+bn)<
b1b2…bn.
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
| bn+1 |
| bn+1 |
| an |
| an+1 |
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| b1 |
| b1+1 |
| b2 |
| b2+1 |
| b3 |
| bn+1 |
| bn+1 |
=
| 1 |
| b1 |
| b1+1 |
| b2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
∵k≥2时,
| 1 |
| 2k-1 |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 3 |
| 1 |
| 2n+1-1 |
| 5 |
| 3 |
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 10 |
| 3 |
∴(1+b1)(1+b2)…(1+bn)<
| 10 |
| 3 |
点评:本题考查数列的通项,考查不等式的证明.考查学生分析解决问题的能力,考查裂项求和法,综合性强.
练习册系列答案
相关题目