题目内容

(2012•昌平区一模)已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=a1
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2,n∈N*)
,求bn+1an-(bn+1)an+1的值;
(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<
10
3
b1b2bn
(n∈N*).
分析:(1)利用点(an,an+1)在直线y=2x+1上,可得an+1+1=2(an+1),从而可得{an+1}是以2为首项,2为公比的等比数列,由此可求数列的通项公式;
(2)确定
bn+1
an+1
=
bn
an
+
1
an
,即可求bn+1an-(bn+1)an+1的值;
(3)由(2)可知,
bn+1
bn+1
=
an
an+1
(n≥2),b2=a2,证明(1+
1
b1
)(1+
1
b2
)
(1+
1
bn
)
10
3
即可.
解答:(1)解:∵点(an,an+1)在直线y=2x+1上,
∴an+1+1=2(an+1)
∴{an+1}是以2为首项,2为公比的等比数列
∴an=2n-1;
(2)解:
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2,n∈N*)

bn+1
an+1
=
bn
an
+
1
an

∴bn+1an-(bn+1)an+1=0
n=1时,b2a1-(b1+1)a2=-3;
(3)证明:由(2)可知,
bn+1
bn+1
=
an
an+1
(n≥2),b2=a2
(1+
1
b1
)(1+
1
b2
)
(1+
1
bn
)
=
1
b1
b1+1
b2
b2+1
b3
bn+1
bn+1
bn+1

=
1
b1
b1+1
b2
a2
a3
a3
a4
•…
an
an+1
bn+1
=2
bn+1
an+1
=2(
1
a1
+
1
a2
+…+
1
an

∵k≥2时,
1
2k-1
=2(
1
2k-1
-
1
2k+1-1
)

1
a1
+
1
a2
+…+
1
an
=1+
1
3
+…+
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+…+(
1
2n-1
-
1
2n+1-1
)]=1+2(
1
3
-
1
2n+1-1
)<
5
3

(1+
1
b1
)(1+
1
b2
)
(1+
1
bn
)
10
3

(1+b1)(1+b2)…(1+bn)<
10
3
b1b2bn
点评:本题考查数列的通项,考查不等式的证明.考查学生分析解决问题的能力,考查裂项求和法,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网