题目内容

(本题满分15分)

如图,在三棱锥中,,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)证明:AP⊥BC;

(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。

本题主要考查空是点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。满分15分。

方法一:

   (I)证明:如图,以O为原点,以射线OP为z轴的正半轴,

建立空间直角坐标系O—xyz

,由此可得,所以

,即

(II)解:设

设平面BMC的法向量

平面APC的法向量

解得,故AM=3。

综上所述,存在点M符合题意,AM=3。

方法二:

(I)证明:由AB=AC,D是BC的中点,得

平面ABC,得

因为,所以平面PAD,

(II)解:如图,在平面PAB内作于M,连CM,

由(I)中知,得平面BMC,

平面APC,所以平面BMC平面APC。

所以

从而PM,所以AM=PA-PM=3。

综上所述,存在点M符合题意,AM=3。

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网