题目内容
设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为
,则μ为( )
| 1 |
| 2 |
| A、1 | B、4 | C、2 | D、不能确定 |
分析:由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.
解答:
解:函数f(x)=x2+4x+ξ没有零点,
即二次方程x2+4x+ξ=0无实根得ξ>4,
∴P(ξ>4)=
,由正态曲线的对称性知μ=4,
故选B.
即二次方程x2+4x+ξ=0无实根得ξ>4,
∴P(ξ>4)=
| 1 |
| 2 |
故选B.
点评:从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的.
练习册系列答案
相关题目
设随机变量ξ服从正态分布N(0,1)Φ(x)=P(ξ<x,则下列结论不正确的是( )
A、Φ(0)=
| ||
| B、Φ(x)=1-Φ(-x) | ||
| C、p(|ξ|)<a=2Φ(a)-1(a>1) | ||
| D、p(|ξ|>a)=1-Φ(a)(a>0) |
设随机变量ξ服从正态分布N(0,1),若P(ξ>1.3)=p,则P(-1.3<ξ<0)=( )
A、
| ||
| B、1-p | ||
| C、1-2p | ||
D、
|
设随机变量ξ服从正态分布N(1,δ2),若P(ξ>-2)=0.7,则函数f(x)=x2+4x+ξ不存在零点的概率是( )
| A、0.7 | B、0.8 | C、0.3 | D、0.2 |