题目内容
已知等差数列{an}的前3项和为6,前8项和为-4,
(1)求数列{an}的通项公式;
(2)设bn=(4-an)qn-1(q≠0,n∈N+),求数列{bn}的前n项和Sn.
(1)设{an}的公差为d,由已知得
![]()
解得a1=3,d=-1.
故an=3-(n-1)=4-n.
(2)由(1)可得,bn=n·qn-1,于是
Sn=1·q0+2·q1+3·q2+…+n·qn-1.
若q≠1,将上式两边同乘以q,
qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn.
两式相减得到(q-1)Sn=nqn-1-q1-q2-…-qn-1=nqn-
=
,
于是,Sn=
,
若q=1,
则Sn=1+2+3+…+n=
.
所以,Sn=![]()
练习册系列答案
相关题目