题目内容

如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线=1(a>0,b>0)的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为( )

A.
B.2
C.
D.
【答案】分析:先根据抛物线方程及两条曲线交点的连线过点F得到交点坐标,代入双曲线,把=c代入整理得 c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e
解答:解:由题意,∵两条曲线交点的连线过点F
∴两条曲线交点为(,p),
代入双曲线方程得-=1,
=c
-4×=1,化简得 c4-6a2c2+a4=0
∴e4-6e2+1=0
∴e2=3+2=(1+2
∴e=+1
故选C.
点评:本题的考点是抛物线的简单性质,主要考查抛物线的应用,考查双曲线的离心率,解题的关键是得出a,c的方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网