题目内容

定义在R+上的函数f(x)对任意实数a,b∈R+,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0.
(1)求f(1)
(2)求证:f(x)为减函数.
(3)当f(4)=-2时,解不等式f(x-3)+f(5)≥-1.
(1)由题意令a=b=1得,
f(1×1)=f(1)+f(1),
得f(1)=0.
(2)设x1,x2∈R+,x1<x2,则
x2
x1
>1

所以f(
x2
x1
)
<0,
故f(x2)=f(
x2
x1
x1)
=f(
x2
x1
)
+f(x1),
所以f(x2)-f(x1)=f(
x2
x1
)
<0,
 所以f(x2)<f(x1),从而f(x)为R+上的减函数.
(3)由已知f(4)=f(2•2)=f(2)+f(2)=-2,得f(2)=-1,
所以原不等式化为:f((x-3)•5)≥f(2),
又有(2)的结论可得:
x-3>0
5>0
5(x-3)≤2

解之得:3<x≤
17
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网