题目内容

函数y=f(x)的定义域为R,对任意,都有恒成立,当时,,试证明:
(1)若x>0,则f(x)>0;(2)f(x)是R上的单调递增函数。

解:(1)令,并限制t>0。由题设条件得

,∴
∵当时,只有当t=0时,f(t)=0
∴当t>0时,f(t)>0,∴若x>0,则f(x)>0
(2)设,令,则,且
,即
∴f(x)时R上的单调递增函数。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网